Sonoporation: mechanical DNA delivery by ultrasonic cavitation.

نویسندگان

  • Douglas L Miller
  • Sorin V Pislaru
  • James E Greenleaf
چکیده

Development of nonviral gene transfer methods would be a valuable addition to the gene-therapy armamentarium, particularly for localized targeting of specific tissue volumes. Ultrasound can produce a variety of nonthermal bioeffects via acoustic cavitation including DNA delivery. Cavitation bubbles may induce cell death or transient membrane permeabilization (sonoporation) on a single cell level, as well as microvascular hemorrhage and disruption of tissue structure. Application of sonoporation for gene delivery to cells requires control of cavitation activity. Many studies have been performed using in vitro exposure systems, for which cavitation is virtually ubiquitous. In vivo, cavitation initiation and control is more difficult, but can be enhanced by cavitation nucleation agents, such as an ultrasound contrast agent. Sonoporation and ultrasonically enhanced gene delivery has been reported for a wide range of conditions including low frequency sonication (kilohertz frequencies), lithotripter shockwaves, HIFU, and even diagnostic ultrasound (megahertz frequencies). In vitro, a variety of cell lines has been successfully transfected, with concomitant cell killing. In vivo, initial applications have been to cancer gene therapy, for which cell killing can be a useful simultaneous treatment, and to cardiovascular disease. The use of ultrasound for nonviral gene delivery has been demonstrated for a robust array of in vitro and mammalian systems, which provides a fundamental basis and strong promise for development of new gene therapy methods for clinical medicine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sonoporation, a redefined ultrasound modality as therapeutic aid: A review

Traditionally a diagnostic modality, ultrasound is emerging as a promising tool for non-invasive therapy, drug delivery, and gene therapy. The ultrasound is a mechanical wave energy generated in a medium as oscillating pressure in space and time at frequencies above 20 kHz, beyond the audible range. The ultrasound exposure generates bioeffects resulting in tissue heating, shear stress, and cavi...

متن کامل

Transfection of cells in suspension by ultrasound cavitation.

Sonoporation holds many promises in developing an efficient, reproducible and permanent gene delivery vector. In this study, we evaluated sonoporation as a method to transfect nucleic acids in suspension cells, including the human follicular lymphoma cell line RL and fresh human Chronic Lymphocytic Leukemia (CLL) cells. RL and CLL cells were exposed to continuous ultrasound waves (445 kHz) in t...

متن کامل

Dynamics of sonoporation correlated with acoustic cavitation activities.

Sonoporation has been exploited as a promising nonviral strategy for intracellular delivery of drugs and genes. The technique utilizes ultrasound application, often facilitated by the presence of microbubbles, to generate transient, nonspecific pores on the cell membrane. However, due to the complexity and transient nature of ultrasound-mediated bubble interaction with cells, no direct correlat...

متن کامل

Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment

Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation rel...

متن کامل

Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.

Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Somatic cell and molecular genetics

دوره 27 1-6  شماره 

صفحات  -

تاریخ انتشار 2002